Economics and similar, for the sleep-deprived

A subtle change has been made to the comments links, so they no longer pop up. Does this in any way help with the problem about comments not appearing on permalinked posts, readers?

Update: seemingly not

Update: Oh yeah!

Friday, July 25, 2003

DeLong and the shorts

Schopenhauer correctly pointed out that "Buying books would be a good thing if one could also buy the time to read them in: but as a rule the purchase of books is mistaken for the appropriation of their contents". If you're wondering why the book reviews promised "tomorrow", several days ago, aren't here, that's why. I am working on a solution to this problem, which will be posted soon.

But in the meantime, I started reading my own archives, and was impressed by two things. First, how good my comments section is (no really, I love you guys, sob), and second, how much better this weblog was when I used to stick to the rubric and write more stuff about economics than anything else. The shift wasn't really a matter of policy; it's just that the economics stuff takes rather a while to write and I have less spare time than I did a year ago. So I'm going to try and keep this short; if it is too dense and incomprehensible as a result, say so in comments and I'll have another go. I've posted it here rather than Crooked Timber because I think it fits better.

The question I'd like to address is one that Brad DeLong asked a while ago with respect to the dot com bubble. Now, Brad actually wrote one of the seminal papers on how it is that markets can get so wildly out of control without someone coming in a turning a profit by taking the other half of all the suckers' trades and waiting them out until they run out of money ("Noise Trader Risk", or something it's called and it's a goody). But he confessed on his weblog to still being a bit surprised that the DeLong/Shleifer1/Summers1 effect seemed to dominate so completely. The question he asked was "Why are there no rational, well-financed players to come in and bring the market back to its senses?"

My answer to this question is that the reason there are none is that it is logically impossible for the kind of market participant Brad is thinking of to exist.

Consider the very simplest model of a stock market bubble there could be. (I have a mathematical version of this first bit on paper, so either it definitely works (10% chance) or I have made a mathematical error and maybe it works (90% chance)). There are two players; "the crowd", who are noise traders, and one single player (call him "Soros") who is rational and has access to unlimited investable capital. The crowd have the normal Blanchard-style bubble dynamics (non economists; basically, every day, the market has to either crash, or rise by enough to compensate the crowd for bearing the risk of a crash). On any given day, unless a crash has already happened, Soros can decide to commit his capital to short positions. If he does this, he sucks up all the excess demand for stock and a crash is inevitable on the next day.

So, in this model, when does Soros decide to pop the bubble? Well, think about it this way. Number the days 0, 1, 2, ..n, and call P(t) the profit for Soros from the strategy "Wait until day T and then pop". Call B(t) the level which the market has reached by day T as long as the bubble is still going (one can read this out of the standard bubbles model) and R(t) the probability of a spontaneous collapse on day t conditional on no collapse before t. I'll use cum(R(t)) to refer to the cumulated version of R(t), ie the unconditional probability as of T=0 that the market has collapsed before T. Clear as mud? Thought so.

Anyway we can say the following things about P(t) as a function of t:
    P(t) is equal to B(t) conditional on no collapse before t and 0 otherwise. Therefore:
  • As B(t) is assumed a monotonically positive function of t, for every day that passes, Soros can commit more capital to the market when he decides to pop, and earns a greater return on every unit of capital committed. This would tend to make P(t) increase with respect to t.
  • Since cum(R(t)) is also a monotonically positive function of t, every further day also increases the risk that the eventual profit will be zero.
  • Whatever happens, Soros can't lose money in this deal, because he is assumed to have perfect information that the market is in fact overvalued. Therefore there is an option-like structure here, meaning that there is a positive reward to waiting. Note that there is no "noise trader risk" in this model.

I think you can solve this model for the optimal value of t in P(t), and that this value could be quite large. The idea is that even for a rational well-financed arbitrageur, it is actually rational to see if a bubble gets bigger so that you get more bang for your buck when popping it (this is the flipside of the noise trader risk in Brad's paper; there, the danger was that it would get bigger and bust smaller arbitrageurs).

So anyway, we've established that a Soros-type investor - a monopolist in the provision of arbitrage - will not pop bubbles but will allow them to get bigger. But a single large monopolist of capital is not the typical way in which we think about stock markets. Typically, we assume that there is a very large number of investors on an equal footing. And obviously, if there is an infinity of Soroses, things are very different. If we call the optimum bubble-popping day for the monopolist T*, then if there is a second Soros in the market, he knows that he can get a smaller return, but take it all for himself by popping on T*-1. But a third Soros could pop on T*-3 and so on, until we get the standard Steve Ross view of the world in which the Soroses are competing with each other tooth and nail, and are content to scalp the tiny return they can get by jumping on the market the moment it gets even a tiny bit out of line with fundamentals.

But hang on ... isn't there something a bit funny about assuming an infinite number of Soroses? Well yes. What we're being asked to believe here, is something akin to the "small firm assumption" of perfect competition; that each individual Soros is so small relative to the total community of Soroses that he can't influence the price (can't prop up the market on T*-1 so as to ensure he can be the one to pop it on T*). But this assumption is indefensible. The Soroses are part of the market. It is not consistent to both assume that any given Soros is large enough to be a price maker with respect to the whole market (a necessary condition for him to be a Soros in this model), but simultaneously small enough to be a price taker with respect to a subset of the market (Soroses). This is the logical inconsistency above; if an arbitrageur is big enough to pop bubbles, he won't do so until he's good and ready. And if he doesn't have the liberty to wait until he's good and ready, then he may call himself an arbitrageur, but he's actually part of the crowd.

There is a lot more to this; particularly, I have to deal with the cases where there is neither a monopoly nor a continuum of Soroses, but rather a small number of them interacting strategically. But I am afraid that, Fermat-like, I have to just say that the solution to that problem is truly marvellous, but is slightly to long for the 45 minutes (1321 words, yo JQ) I have allocated to this post.

1Imagine me booing and hissing like the crowd at a pantomime at the mention of these two names ....

0 comments this item posted by the management 7/25/2003 06:50:00 AM

This page is powered by Blogger. Isn't yours?


Bitch : Lab
Aaronovitch Watch
Brad Delong
The Robert Vienneau blog

Political and philosophical heroes

Subcomandante Marcos
Will Rogers
Boris Vian
The English Svejk

RSS Feed:
This seems to matter to a lot of people

If you liked this "Daniel Davies" website, you might be interested in

"Danux", the web developer
The martial artist (and fan of extremely annoying Flash intros) from Blackburn
The Welsh political journalist
A Scouse computer programmer who collects Soviet cameras
"Danimal", the heavy metal drummer
Canada's finest recorder of radio jingles
More of the same, at the Guardian
A tailor's in Lampeter where Jimmy Carter once bought a hat
An advertising man who has written a novel about dogging (I think we sometimes get each other's email)
An award-winning facilities manager in Dubai
The son of the guitarist from the Kinks Update: he is apparently "balls-out motherfucking shit-dicked exxxstatic" to be included on a Kerrang magazine giveaway CD of Iron Maiden covers, which is nice.
"Fritz Gretel" from the Ramones film "Rock 'n' Roll High School"
The former presenter of the leading politics talk radio show on the Isle of Man, now a business change manager in the Manx government secretary's office
An aquarium curator in Sussex who keeps on scoring home runs like this (this is the first stable link I've found, but he is constantly kicking ass in acquarial terms)

If you didn't like this "Daniel Davies" website, then don't give up on the Daniel Davies industry completely!

An American "Christian Political Analyst" who has the same name as me
A student at Patrick Henry College
these two might be the same guy ...
"Scatter", the deceased Liberian gangster
A naked man stuck in a chimney in Wigan
A thug in Barrow

This blog has been going downhill since ...

August 2002
September 2002
October 2002
November 2002
December 2002
January 2003
February 2003
March 2003
April 2003
May 2003
June 2003
July 2003
August 2003
September 2003
November 2003
December 2003
March 2004
April 2004
May 2004
May 2005
June 2005
July 2005
August 2005
September 2005
October 2005
November 2005
December 2005
January 2006
February 2006
March 2006
April 2006
May 2006
June 2006
July 2006
August 2006
September 2006
October 2006
November 2006
December 2006
January 2007
February 2007
March 2007
April 2007
May 2007
June 2007
July 2007
August 2007
September 2007
October 2007
November 2007
December 2007
January 2008
February 2008
March 2008
April 2008
May 2008
June 2008
July 2008
August 2008
September 2008
October 2008
November 2008
December 2008
January 2009
February 2009
March 2009
April 2009
May 2009
June 2009
July 2009
August 2009
September 2009
October 2009
November 2009
December 2009
January 2010
February 2010
March 2010
April 2010
May 2010
June 2010
July 2010
August 2010
September 2010
October 2010
November 2010
December 2010
January 2011
February 2011
March 2011
April 2011
May 2011
June 2011
July 2011
August 2011
September 2011
October 2011
November 2011
December 2011
January 2012
February 2012
March 2012
April 2012
May 2012
June 2012
July 2012
August 2012
September 2012
October 2012
December 2012
February 2013
April 2013
June 2013
July 2013
August 2013
March 2014
April 2014
August 2014
October 2015
March 2023